Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

نویسندگان

  • Bor-Ren Lin
  • Chih-Chieh Chen
چکیده

This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at Vin/2 voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation

In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...

متن کامل

Analysis and Experimentation of Soft Switched Interleaved Boost Converter for Photovoltaic Applications

Conventional energy sources are fast depleting due to poor conservation practises and excessive usage while the world’s energy demands are growing by minute. Additionally, the cost of producing conventional energy is rising also leading to an increase in harmful environmental pollution. Hence, there is a need to look at alternative energy sources such as sun, water and wind. Photovoltaic (PV) i...

متن کامل

Implementation of Floating Output Interleaved Input DC-DC Boost Converter

This paper presents the analysin ,design and implementation of a high voltage ratio topology of DC-DC converter. The DC-DC converter has high voltage ratio with reduced input current, output voltage and output current ripple, and also reduces the voltage and current rating of power electronics components and compared with conventional boost converter. The voltage stress on the switches are  red...

متن کامل

High Step-Up Interleaved DC/DC Converter Using VM Cell for PV Applications

This work proposes a high step-up interleaved dc/dc topology utilizing a VM (voltage multiplier) cell suitable for PV applications. The VM cells D/C (Diode/Cap.) are cascaded among the phases to approach a high voltage gain. Besides, the voltage converting ratio of the presented structure can be improved by extending the VM cells and it also leads to drop in the normalized voltage stress throug...

متن کامل

An Efficient High-Step-Up Soft-Switching Boost Converter for Photovoltaic Application

In this paper an efficient high step-up converter with a coupled- inductor with soft- switching operation is presented. The proposed topology includes a coupled-inductor boost converter for raising the voltage gain. Moreover, a simple auxiliary resonant circuit composed of an auxiliary switch, a clamping diode and a resonant tank (inductor, capacitor), is adopted in this paper. The coupled-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014